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ON-WAFER CHARACTERIZATIONOF MILLIMETER-WAVEANTENNAS FOR

WIRELESS APPLICATIONS

By

RaineeN.Simonsand RichardQ.Lee

The paper demonstrates a de-embedding technique and a direct on-substrate

measurement technique for fast and inexpensive characterization of miniature antennas for

wireless applications at millimeter-wave frequencies. The technique is demonstrated by

measurements on a tapered slot antenna (TSA). The measured results at Ka-Band frequencies

include input impedance, mutual coupling between two TSAs and absolute gain of TSA.



I.JE_tQ_[_T.J.0_:

Severalemerging wireless applications, such as, local multipoint distribution

services (LMDS) at 28 GHz, fixed wireless broadband local distribution service at 38 GHz and

indoor local area network at 60 GHz require low cost printed circuit antennas for

communications [1]. These antennas are characterized for their votage standing wave ratio

(VSWR) bandwidth and directional gain by measuring the reflection coefficient using a

calibrated automatic network analyzer (ANA), and the received power in a calibrated antenna

test range, respectively. Some antenna designs may even require a knowledge of the mutual

coupling between elements in an array. In order to interface the antenna to the test equipment

for measurements a custom built test fixture with a launcher, which at lower millimeter-wave

(mm-wave) frequencies is of coaxial type while at higher mm-wave frequencies is of

waveguide type, is necessary [2]. In addition these antennas may have a slot line, or a coplanar

stripline (CPS), or a coplanar waveguide (CPW) based feed network for simple and efficient

feeding [3]. For example, a Vivaidi antenna has a slot line feed. Hence for characterization in

addition to the custom test fixture an integral printed transition between the antenna feed line

and the coaxial or rectangular waveguide launcher is also required. These transitions and

fixtures which are inevitable for measurements impose several limitations. First, the input

impedance and the VSWR bandwidth determined at the plane of the test fixture by the ANA is the

overall response of the transition, the feed network and the antenna. Therefore these

measurements do not present the true antenna characteristics. Second, the uncertainty

introduced by the interaction between the test fixture and the antenna is difficult to predict at

mm-wave frequencies. Third, the bandwidth of the transitions are typically limited to a few GHz

at mm-wave frequencies. Therefore several transitions and fixtures may be required to cover

the desired frequency band resulting in high cost. Furthermore, it has been experimentally

demonstrated that a coaxial launcher coupled with the CPW feed line can introduce serious



modingproblems[4].

In this paperwedemonstratea de-embeddingtechniqueanda directon-substrate

measurementtechniquefor characterizing mm-wave printed antennas. To the best of our

knowledge this demonstration is the first of its kind for printed antennas. The above technique

require a pair of ground-signal microwave probes (Picoprobe Model 40A, pitch = 10 mils), a

wafer probe station (Cascade Model 42), and an ANA (HP8510C). This characterization

technique eliminates the need for custom test fixture and antenna feed network consisting of

transitions to microstrip line. Therefore, this technique is extremely accurate, fast and

inexpensive when automated for repeated measurements. This technique is also very versatile

and is adaptable to most printed antennas; however, for demonstration purpose we have chosen a

short tapered slot antennas ('I'SAs). Short antennas are essential for mobile wireless

applications for achieving compactness. The TSA is chosen because of its high gain, wide

bandwidth and simple uniplanar construction. The TSAs that are included in this demonstration

are the linearly tapered slot antenna (LTSA) and the Vivaldi antenna (VA). The results presented

are the input impedance of a LTSA, the mutual coupling between two LTSAs in close proximity

and the gain of a VA. The input impedance is determined by the de-embedding technique while the

mutual coupling and gain are determined by the direct on-substrate measurement technique.

II._ LAYOUT:

Figure 1 illustrates the layout of a typical LTSA with length L, width W, finite

width ground planes W1 on either side, and semi-flare angle e. The short length of slot line

exciting the LTSA has a length L1 and slot width W2. The relative permittivity and thickness of

the dielectric substrate are indicated as _r and D respectively.

III. [_ METHODOLOGY:

a.) J_ Technique:
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In order to isolate the influence of the input slot line feed on the input impedance

of the LTSA, the ANA is calibrated using a Thru-Reflect-Line (TRL) calibration technique [5].

This technique relies on standards which are fabricated beside the TSA to be characterized on a

single substrate. The inset in Fig. 1 shows a set of slot line TRL on-wafer standards which are

used for calibrating the ANA. The standards consists of a slot line thru, a slot line short circuit

and a slot line delay line. The thru line length is twice the feed line length. The short circuit line

length is the same as the feed line length. The delay line (2L'1) and the thru line (2L1) lengths

are related through the following expression [5]:

2L'1 -2L1 = 15/[(f_ + f2) _¢eft ] cms. (1)

Where fl and f2 are the start and stop frequencies. The calibration of the ANA is done using the

National Institute of Standards and Technology (NIST) de-embedding software program [6]-[8].

The software runs on a HPg000 computer and controls the ANA. This program solves a 12-term

error model from the thru line two-port measurements, the delay line two-port measurements

and the two one-port reflection measurements. The program then establishes an electrical

reference plane to which all de-embedded S-parameters are referred. This plane is shown by

dashed line in Fig. 1. The reference impedance after error correction is established by the

characteristic impedance Zo of the delay line. The slot width W2 of the slot line determines Z0.

Thus, the reflection coefficient of the LTSA is de-embedded from the measured reflection

coefficient at the input terminals of the slot line feed.

b.) Direct Measurement _:

In this method, the ground-signal microwave probes are calibrated to the tips

using an ANA and an open circuit, a short circuit and a matched load as standards. The standards

for direct measurements are provided by the probe manufacturer on an impedance standard

substrate (ISS). The calibrated probe is then made to contact the input terminals of the slot line
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andexcitetheLTSAor theVA.Theshortlengthof the slot line between the probe tips and the VA

throat minimizes the probe interference.

IV. _ CHARACTERISTICS:

a.) _ Imoedance:

The input impedance Zin at the reference plane of the LTSA in Fig. 1 is determined from

the de-embedded reflection coefficient ($11) using the well known transmission line equation

ISlll Z_ = (Zin " Zo)/(Zin + Zo). (2)

c.) Mutual Coupling:

The mutual coupling between two LTSAs in close proximity and excited by two calibrated

ground-signal microwave probes is determined from the measured direct transmission

coefficient (IS21 I) on the ANA. The two LTSAs can be arranged either in coplanar or stacked

configuration. The ground-signal microwave probes are calibrated to the tips as explained in

Section III (b) above, Fig. 2 shows the experimental setup and the LTSA parameters.

d.) Ab_lute Gain:

To measure the absolute gain G, a pair of identical VA excited by two calibrated ground-

signal microwave probes are oriented facing each other and polarization matched. The ground-

signal microwave probes are calibrated to the tips as in the case of mutual coupling

measurements. The distance of separation R between the antennas is such that far-field

conditions prevail and is equal to or greater than

R = 2D12/_.o. ( 3 )

Where D1 and Zo are the largest aperture dimension of the VA and the free space wavelength at

the measurement frequency respectively. The gain is given by Friis transmission formula [9]

Gr Gt = G2 = (Pr/Pt)(4_R/_.o)2. (4)
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WhereGr is the gain of the receiving antenna and Pr is the power received. Similarly Gt is the

gain of the transmitting antenna and Pt is the power transmitted. Since the two VAs are identical

Gr = Gt = G. The power ratio Pr/P t is the direct transmission coefficient (IS2112) taking into

consideration the separation between the two antennas and is measured by the ANA. The

experimental setup is shown in Fig. 3.

V. MEASURED RESULTS:

To facilitate antenna measurements, the probe station probe arms and the metal stage are

mechanically modified and replaced by an expanded foam block respectively. Precaution is also

taken to prevent interference from the metal parts of the probe star/on, partially surrounding

and in close proximity to the antenna, by covering them with microwave absorbers.

The real and imaginary part of the de-embedded LTSA input impedance Re(Zin) and

Im(Zin) as a function of the frequency are shown in Fig. 4. The frequency range is chosen as the

entire Ka-band to demonstrate the broadband nature of the measurement technique. The figures

show a series of resonances which are due to interaction between the reflected waves from the

feeding end (throat) and from the open end (termination) of the LTSA. The Re(Zin) takes on a

value any where from a few tens of ohms to several hundred ohms. The Im(Zin) varies between

approximately :1:100 ohms over a significant portion of the frequency range.

The measured mutual coupling between two identical coplanar and stacked LTSAs as a

function of the horizontbl and vertical separation respectively are shown in Fig. 5. The

measurements are performed at 29.166 GHz which is the center frequency of the LMDS band. In

the two cases that are considered here for identical separations, the coupled power is smaller

when the LTSAs are coplanar. This is so because, the centers of the LTSAs are physically further

apart to begin with.
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The gain for a VA as determined from the measured IS211 as a function of the frequency is

shown in Fig. 6. The measurements are performed over the LMDS frequency band. Since the

electrical length of the VA increases with frequency, the gain also increases with frequency. The

gain for a single element is on the order of 11 dB which is typical for a VA.

VI. _Q_ AND DISCUSSIONS:

The paper demonstrates for the first time a de-embedding technique and a direct on-

substrate measurement technique for characterizing mm-wave printed antennas. The efficacy of

the above techniques is demonstrated by first, de-embedding the input impedance of a LTSA;

second, by direct on-substrate measurement of the mutual coupling between two LTSAs in close

proximity and the gain of a VA. By eliminating the need for custom test fixture and transitions

to microstrip line, the above techniques are precise, fast and inexpensive and ideally suited for

wireless applications at ram-wave frequencies.
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Fig.1

Fig.2

Fig.3

Fig.4

Fig.5

Fig.6

FIGURE CAPTIONS

Schematic Illustrating the Experimental Set-Up for Measuring the Input Impedance of a

LTSA (L = 1.0 inch, W = 0.4474 inch, e = 12.5 ° W1 = 0.125 inch, D = 0.01 inch, Cr =

10.5).) and the TRL On-Wafer Slot-line Calibration Standards (L1 = 0.125 inch, W2 =

0.003 inch, LI' = 0.1475 inch.

Experimental Set-Up for Measuring the Mutual Coupling Between Two LTSAs (L = 1.5

inch, W = 0.6691 inch, W1 = 0.125 inch, 0 = 12.5 °, D = 0.01 inch, Cr = 10.5).

Experimental Set-U p for Measuring the Gain of VA.

De-embedded Real and Imaginary Parts of the Input Impedance of a LTSA as a Function of

Frequency.

Measured Mutual Coupling Between Two LTSAs in Coplanar and Stacked Arrangement as a

Function of the Separation.

Measured Gain of a VA as a Function of Frequency.
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